(2x-5)*(3x+2)-(x^2-5x)*3=

Simple and best practice solution for (2x-5)*(3x+2)-(x^2-5x)*3= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-5)*(3x+2)-(x^2-5x)*3= equation:


Simplifying
(2x + -5)(3x + 2) + -1(x2 + -5x) * 3 = 0

Reorder the terms:
(-5 + 2x)(3x + 2) + -1(x2 + -5x) * 3 = 0

Reorder the terms:
(-5 + 2x)(2 + 3x) + -1(x2 + -5x) * 3 = 0

Multiply (-5 + 2x) * (2 + 3x)
(-5(2 + 3x) + 2x * (2 + 3x)) + -1(x2 + -5x) * 3 = 0
((2 * -5 + 3x * -5) + 2x * (2 + 3x)) + -1(x2 + -5x) * 3 = 0
((-10 + -15x) + 2x * (2 + 3x)) + -1(x2 + -5x) * 3 = 0
(-10 + -15x + (2 * 2x + 3x * 2x)) + -1(x2 + -5x) * 3 = 0
(-10 + -15x + (4x + 6x2)) + -1(x2 + -5x) * 3 = 0

Combine like terms: -15x + 4x = -11x
(-10 + -11x + 6x2) + -1(x2 + -5x) * 3 = 0

Reorder the terms:
-10 + -11x + 6x2 + -1(-5x + x2) * 3 = 0

Reorder the terms for easier multiplication:
-10 + -11x + 6x2 + -1 * 3(-5x + x2) = 0

Multiply -1 * 3
-10 + -11x + 6x2 + -3(-5x + x2) = 0
-10 + -11x + 6x2 + (-5x * -3 + x2 * -3) = 0
-10 + -11x + 6x2 + (15x + -3x2) = 0

Reorder the terms:
-10 + -11x + 15x + 6x2 + -3x2 = 0

Combine like terms: -11x + 15x = 4x
-10 + 4x + 6x2 + -3x2 = 0

Combine like terms: 6x2 + -3x2 = 3x2
-10 + 4x + 3x2 = 0

Solving
-10 + 4x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-3.333333333 + 1.333333333x + x2 = 0

Move the constant term to the right:

Add '3.333333333' to each side of the equation.
-3.333333333 + 1.333333333x + 3.333333333 + x2 = 0 + 3.333333333

Reorder the terms:
-3.333333333 + 3.333333333 + 1.333333333x + x2 = 0 + 3.333333333

Combine like terms: -3.333333333 + 3.333333333 = 0.000000000
0.000000000 + 1.333333333x + x2 = 0 + 3.333333333
1.333333333x + x2 = 0 + 3.333333333

Combine like terms: 0 + 3.333333333 = 3.333333333
1.333333333x + x2 = 3.333333333

The x term is 1.333333333x.  Take half its coefficient (0.6666666665).
Square it (0.4444444442) and add it to both sides.

Add '0.4444444442' to each side of the equation.
1.333333333x + 0.4444444442 + x2 = 3.333333333 + 0.4444444442

Reorder the terms:
0.4444444442 + 1.333333333x + x2 = 3.333333333 + 0.4444444442

Combine like terms: 3.333333333 + 0.4444444442 = 3.7777777772
0.4444444442 + 1.333333333x + x2 = 3.7777777772

Factor a perfect square on the left side:
(x + 0.6666666665)(x + 0.6666666665) = 3.7777777772

Calculate the square root of the right side: 1.943650631

Break this problem into two subproblems by setting 
(x + 0.6666666665) equal to 1.943650631 and -1.943650631.

Subproblem 1

x + 0.6666666665 = 1.943650631 Simplifying x + 0.6666666665 = 1.943650631 Reorder the terms: 0.6666666665 + x = 1.943650631 Solving 0.6666666665 + x = 1.943650631 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + x = 1.943650631 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + x = 1.943650631 + -0.6666666665 x = 1.943650631 + -0.6666666665 Combine like terms: 1.943650631 + -0.6666666665 = 1.2769839645 x = 1.2769839645 Simplifying x = 1.2769839645

Subproblem 2

x + 0.6666666665 = -1.943650631 Simplifying x + 0.6666666665 = -1.943650631 Reorder the terms: 0.6666666665 + x = -1.943650631 Solving 0.6666666665 + x = -1.943650631 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + x = -1.943650631 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + x = -1.943650631 + -0.6666666665 x = -1.943650631 + -0.6666666665 Combine like terms: -1.943650631 + -0.6666666665 = -2.6103172975 x = -2.6103172975 Simplifying x = -2.6103172975

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.2769839645, -2.6103172975}

See similar equations:

| 4x-101(3x^2-15)= | | -2x^2+3x-6=0 | | -8(x+1)=4(x-11) | | 2*3.14*r=44 | | -6(x-3)=3(x-9) | | 7(x+4)=6x+29 | | 115-5x=13x-23 | | 3x+26=10x-27 | | 6-7x=15-14x | | -138-8x=10x+24 | | 2(x-5)=-26 | | 137-5x=3x+17 | | 2x*67=345 | | 25x-12=12x-15 | | 5x+16=13x-48 | | 9y=18 | | 7+y=39 | | 6a*a=864 | | .33(9b-36)=-9 | | (-17)+(-3)= | | (-5)+3= | | 10x^2+29x-21=0 | | 10x^2+29x=0 | | 2(3.5n-1)=26 | | 0.5(4-6x)=8 | | 6x^2-9x-15=0 | | 7x^3-28x=0 | | 4y^2-22y+24=0 | | (X^2+4)=(24+X) | | X+X=24 | | 3(x+4)=-5x-36 | | 18x^2-15x+36=0 |

Equations solver categories